US dimension units for cables - comparison with metric dimensions

In North American markets, cable cross-sections are usually stated as AWG (American Wire Gauge) sizes or, for large cable cross-sections (above AWG 4/0), using the unit "kcmil". You will find these units in the relevant standards for designing cables by current rating.

Multi-standard cables must comply with both the specifications of the metric system (in which the cross-section in mm^{2} is stated as the nominal size) as well the requirements of the AWG system. For this reason, both systems are compared below based on the nominal size.

Please note that exact correspondences between the two systems do not exist as the specifications of the two systems differ in terms of the cross-section and conductor resistance. The following table can be used to help you when selecting the correct nominal cross-section.
Standards required as part of project planning, such as UL 1581 or IEC 60228 (VDE 0295), must be applied accordingly.
Please note that when selecting appropriate connecting elements such as conductor end sleeves, the actual conductor cross-section is decisive. This is stated on the relevant product page.

Column 1a Column 1b		Column 2 ио!ฺsıәлиоэ э!ңұшоәэ	Column 3	Column 4 	Column 5a Column 5b 	
AWG	kcmil	mm ${ }^{2}$	mm ${ }^{2}$	mm ${ }^{2}$	AWG	kcmil
	750	380.03	400	400		800
	500	253.35	300	300		750
	450	228.02	240	240		500
	400	202.68				450
	350	177.35	185	185		400
	300	152.01				350
	250	126.68	150	150		300
4/0		107.22	120	120		250
3/0		85.01	95	95	4/0	
2/0		67.43	70	70	3/0	
1/0		53.49			2/0	
1		42.41	50	50	1/0	
2		33.62	35	35	1	
3		26.67			2	
4		21.15	25	25	3	
5		16.77			4	
6		13.30	16	16	5	
7		10.55			6	
8		8.37	10	10	7	

Column 1a Column 1b		Column 2 ио!sләлиоэ э!ңәшоәэ		Column 4 	Column 5a Column 5b	
AWG	kcmil	mm ${ }^{2}$	mm^{2}	mm ${ }^{2}$	AWG	kcmil
9		6.63			8	
10		5.26	6	6	9	
11		4.17			10	
12		3.31	4	4	11	
13		2.62			12	
14		2.08	2.5	2.5	13	
15		1.65			14	
16		1.31	1.5	1.5	15	
17		1.04			16	
18		0.82	1	1	17	
19		0.65	0.75	0.75	18	
20		0.52			19	
21		0.41	0.5	0.5	20	
22		0.33	0.34	0.34	21	
23		0.26			22	
24		0.20	0.25	0.25	23	
25		0.16			24	
26		0.13	0.14	0.14	25	

Principle of cross-section figures

Example 1:

The electro-technical project planning requirements as per NorthAmerican standards stipulate that you require a cable of AWG 20.
The relevant product page in the catalogue does not list any cables with this AWG size. A size of AWG 20 is listed in the above table in column 1a. Column 3 lists the metric nominal cross-section that, as a minimum, meets the electrical requirements of size AWG 20. Thus, you will require a cable with a nominal cross-section of $0.75 \mathrm{~mm}^{2}$.

Example 2:

The electro-technical project planning requirements as per European standards stipulate that you require a cable of $0.75 \mathrm{~mm}^{2}$.
The product page in the catalogue lists only AWG figures or large metric cross-sections. Nominal cross-section $0.75 \mathrm{~mm}^{2}$ is listed in the above table in column 4. Column 5a lists the AWG size that, at a minimum, meets the electrical requirements of a nominal crosssection of $0.75 \mathrm{~mm}^{2}$. Thus, you will require a cable with size AWG 18.

General dimensions*:

The base units are as follows:
In the British gravitational system:
Length (ft) - force (lbf = Lb) - time (s)
In the British absolute system:
Length (ft) - mass (lb) - time (s)

1. Measures of length

$1 \mathrm{mil} \quad=0.0254 \mathrm{~mm}$
1 inch (in;") $=25.4 \mathrm{~mm}$
1 foot ($\left.\mathrm{ft} ;{ }^{*}\right) \quad=0.305 \mathrm{~m}$
1 yard (yd) $\quad=0.914 \mathrm{~m}$
1 chain (ch) $\quad=20.1 \mathrm{~m}$
1 statue mile $\quad=1.61 \mathrm{~km}$
1 nautical mile $\quad=1.835 \mathrm{~km}$
1 statute mile $\quad=1760$ yards
2. Measures of volume

1 cubic inch	$=16.39 \mathrm{~cm}^{3}$
1 cubic foot	$=0.0283 \mathrm{~m}^{3}$
1 cubic yard	$=0.765 \mathrm{~mm}^{3}$
1 US liquid gallon	$=3.791$
1 pint	$=0.4731$
1 quart	$=0.9461$
1 brit gallon	$=4.531$
1 barrel	$=119.21$

3. Measures of area

1 circ. mil (CM)	$=0.507 \cdot 10^{-3} \mathrm{~mm}^{2}$
1 kcmil (MCM)	$=0.5067 \mathrm{~mm}^{2}$
1 square inch (sq. in.)	$=645.16 \mathrm{~mm}^{2}$
1 square foot (sg.ft.)	$=0.0929 \mathrm{~m}^{2}$
1 square yard	$=0.836 \mathrm{~m}^{2}$
1 acre	$=0.00405 \mathrm{~km}^{2}$
1 square mile	$=2.59 \mathrm{~km}^{2}$
$1 \mathrm{~m}^{2}$	$=10.764 \mathrm{sq} . \mathrm{ft}$.

4. Units of mass

British gravitation system:
1 slug $=1 \mathrm{lbs} \cdot \mathrm{s}^{2} / \mathrm{ft}$
British absolute system:
1 pound $=1 \mathrm{lb}$
1 slug $=32.174 \mathrm{lb}$, with $32.174 \mathrm{ft} / \mathrm{s}^{2}$
as the standard value of gravitational acceleration

1 grain	$=64.80 \mathrm{mg}$
	$=1.770 \mathrm{~g}$
1 dram	$=16$ drams $=28.35 \mathrm{~g}$
1 ounce (oz)	$=16 \mathrm{oz}=453.59 \mathrm{~g}$
1 pound (lb)	$=14 \mathrm{lbs}=6.35 \mathrm{~kg}$
1 stone	$=0.907 \mathrm{t}$
1 US ton (short ton)	
1 Brit. ton (long ton)	$=0.016 \mathrm{t}$

5. Units of force

British gravitational system:
pound-force $1 \mathrm{lbf}=1 \mathrm{Lb}$
British absolute system:
poundal $1 \mathrm{pdl} \quad=1 \mathrm{lb} \cdot \mathrm{ft} / \mathrm{s}^{2}$
$1 \mathrm{lbf}=32.174 \mathrm{pdl}-9.80665 \mathrm{lb} \cdot \mathrm{m} / \mathrm{s}^{2}$
6. Conversion to metric units

1 pound-force (lbf)	$=0.454 \mathrm{kp}$
1 Brit. ton-force	$=1016 \mathrm{kp}$
1 poundal (pdl)	$=0.1383 \mathrm{~N}$
1 lbf	$=4.445 \mathrm{~N}$

7. Electrical units per unit of length

$1 \mu \mathrm{f}$ per mile	$=0.62 \mu \mathrm{~F} / \mathrm{km}$
1 megohm per mile	$=1.61 \mathrm{M} \Omega \cdot \mathrm{km}$
1 megohm per 1000 ft	$=3.28 \Omega \cdot \mathrm{~km}$
1 ohm per 1000 yd	$=1.0936 \Omega / \mathrm{km}$

8. Weights per unit of length

1 lb per foot	$=1.488 \mathrm{~kg} / \mathrm{m}$
1 lb per yard	
1 lb per mile	$=0.469 \mathrm{~kg} / \mathrm{m}$
	$=0.282 \mathrm{~kg} / \mathrm{m}$

9. Density
$1 \mathrm{lb} / \mathrm{ft}^{3} \quad=16.02 \mathrm{~kg} / \mathrm{m}^{3}$
10. Specific weight
$1 \mathrm{lbf} / \mathrm{ft}^{3} \quad=16.02 \mathrm{kp} / \mathrm{m}^{3}$
11. Copper wire weight per mile

$\mathrm{lb} /$ mile	$=\varnothing \mathrm{mm}$
5	$=0.404$
6.5	$=0.51$
7.5	$=0.55$
10	$=0.64$
20	$=0.90$
40	$=1.27$

12. Units of energy

1 horsepower	$=0.746 \mathrm{~kW}($ H. P. $)$
1 Brit. therm. unit	$=0.252 \mathrm{kcal}$

Insulation wall thickness is often expressed in $\mathrm{n} / 64$ inches with $\mathrm{n} / 64$ inch equalling approx. 0.4 mm .
13. Further dimensions for wire weights and electrical field strengths:

Ibf pr. MFeet	$=1.488 \mathrm{~kg} / \mathrm{km}$
Ibf pr. Mile	$=0.282 \mathrm{~kg} / \mathrm{km}$
$40 \mathrm{~V} / \mathrm{mil}$	$=1.6 \mathrm{kV} / \mathrm{mm}$
$80 \mathrm{~V} / \mathrm{mil}$	$=3.2 \mathrm{kV} / \mathrm{mm}$
$100 \mathrm{~V} / \mathrm{mil}$	$=4.0 \mathrm{kV} / \mathrm{mm}$
$250 \mathrm{~V} / \mathrm{mil}$	

