

DATA SHEET

2170050

Twinax Cable 105 Ohm

valid from:

17.07.2001

Application

Twinax Cable 105 Ohm 2Y2YCY 2 x 0.56 mm², acc. to IBM P/N 7362211.

Computer cable for high data transmission rates for data systems with characteristic impedance between 100 to 120 Ω as well as entire areas of high-frequency engineering and electronic.

The cable is suitable for fixed and flexible application in dry and damp rooms as well as stationary outdoor application.

Design

 $\begin{array}{lll} \mbox{Conductor 1:} & \mbox{Multi-wire , bare copper } 0.56 \mbox{ mm}^2 \mbox{ (7 x } 0.32 \mbox{)} \\ \mbox{Conductor 2:} & \mbox{Multi-wire , tinned copper } 0.56 \mbox{ mm}^2 \mbox{ (7 x } 0.32 \mbox{)} \\ \mbox{Insulation} & \mbox{Cellular-PE (Polyethylene 2Y) uncoloured} \end{array}$

Stranding Cores twisted to pairs (conductor 1 and conductor 2 twisted into pairs)

length of twist approx. 60 mm

PE-inner sheath (2Y) with filler, outer diameter 6.1 mm

PE-inner sheath is dividable from insulating

Screening braid of tinned copper wires, coverage 95 % Sheath PVC, black, flame retardant, UV resistant

Outer diameter approx. 8.3 mm

Sheath marking

LAPP KABEL STUTTGART Twinax Cable 105 Ohm 2Y2YCY 2 x 0.56 mm² ART. 2170050

Electrical properties at 20°C

Conductor resistance		max. Ω/km	36
Screen resistance		max. Ω/km	10
Insulation resistance		min. Ωxkm	10
Capacitance at	1 kHz	max. nF/km	54
Velocity of propagation		%	66
Impedance (core/core) at	500 kHz	Ω	111 ± 5
Impedance at	1 MHz	Ω	107 ± 5
Impedance at	2 MHz	Ω	105 ± 5
Attenuation at	100 kHz	nom. dB/100m	0,4
	500 kHz	nom. dB/100m	0,9
	1 MHz	nom. dB/100m	1,5
	5 MHz	nom. dB/100m	3,3
	10 MHz	nom. dB/100m	4,6
	50 MHz	nom. dB/100m	10,4
	100 MHz	nom. dB/100m	14,7
	200 MHz	nom. dB/100m	20,8
Operating voltage	core/core	peak value max. V	500
Test voltage	core/core	U_{eff} V	1000
	core/screen	U_{eff} V	3000

Mechanical and thermal properties

Tensile stress		max. N	120
Cable weight		ca. kg/km	68
Minimum bending radius		mm	40
Permissible temperature range	moved	°C	- 40 to+ 80
	fixed	°C	-5 to +80
Fire load		kWh/m	0,5

Flame retardant acc. to VDE 0482, part 265-2-1 / IEC 60332-1

elaborated by:			
TE-K: N. Ensslen	Document:	DB2170050_2EN	page 1 of 1

Nr.: 0019/0894